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Motivation: Understand why structured prediction
Inference seems easy Iin practice despite being NP-Hard

Structured prediction is a problem where you want to
predict a large collection of interdependent variables.

The key point is that given
realistic data, the focus should
not be on worst-case
complexity and instead on
bringing down the hamming
error




The problem: background/foreground prediction

Perfect inference is intractable, yet Structured prediction models like CRFs
heuristics work, so how good are they decompose to:
actually when using hamming error?

The goal is to formalize amodel of the  s(X,Y) =) #u(X,Y2) + D ¢uw(X, Yo, Ya).

Image segmentation process, analyze vy Hwes
the expected Hamming error of an (The exact MAP/marginal inference is
efficient algorithm, and prove its error is NP-Hard)

as small as theoretically possible




Hardness vs practicality

Worst case analysis focuses on adversarially  Real data has regularities like smooth
constructed images boundaries, local consistency, and non-
adversarial noise, which makes

For MAP or marginal inference on 2-D grids : :
Inference easier

with pariwise interactions — NP-Hard

The paper formalizes this intuition through a probabillistic
generative model for observations

X — {Yi: with probability 1 — g,

—Y,, with probability g.

Y € {—1,+1}"
v {Ym, with probability 1 — p,

- | -Y,Y,, with probability p.



The Generative Model

This is the main data-generative
mechanism

For each node we observe a noisy
unary observation, which can flip the
sign
¥ _ Y., with probability 1 — g,
; —Y,, with probability g.

Edge observations represent whether
neighbors agree

v {YHY,;,, with probability 1 — p,

—Y,Y,, with probability p.

p is typically small, and g can
potentially be high. This matches what
we expect from real images

Y (all -1’s) X Y (X)
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(a) Ground truth  (b) Observed evidence (c) Approximate recovery

We’re essentially stating that with
small edge noise, and grid structure,
iInference can become tractable

Related to Beyond worst-case analysis



Hamming Error

Hamming Error:

lamming error counts how many

i 1
abels are mismatched, which is e(A) = m;:mx L XY =y 5 |A(X) — yl|1
appropriate for pixels. - -

If an image has 10,000 pixels and
we mislabel 1/, then the
segmentation is nearly perfect,
regardless of whether the CRF

score Is exactly maximized This is the entire premise of the paper, if
exact inference is hard, low error labeling
may be easy, and Hamming error is the
metric we should use

We don’t need the exact MAP solution



The two stage algorithm

So what algorithm finds an optimal solution effectively,

using what we know about the general data?
Edge observations are reliable

. . (b <<)
The algorithm shared is a simple 2 stage

decoding algorithm that achieves the optimal
possible Hamming error - matching what the
Intractable marginal MAP would achieve

Node observations are noisy
(g can be large)

Fat

Y = arg  max X, V.Y,

The first stage gives the shape of the Vet

segmentation (recovering the connected
geometry)
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The second stage picks the correct sign = ; Aoy <0, output — X5 else output ¥



Why does Stage 1 work?

Ignore all unary/node observations, instead compute a Max-
Agreement problem (solve the labeling that agrees with the
max number of edges

We reduce the problem to Maximum-Weight Perfect Matching
which has a polynomial time solution O(n®) or O(n%*)

P

Y =arg max X Yo Y.
Y e{+1}N

uvekE

t[Hamming error after Stage 1] = O(p*N).




Why does Stage 1 work? - Continued

Intuitively the edge observations encode local smoothness, and
iIndicate whether two nieghboring pixes should match or differ

In the real world, noise on edges is small, so we’re essentially
solving a denoising problem where we trust local pairwise relations

If a pixel was incorrectly
labeled, the edge
observations would need to
be wrong enough to support
the mistake.




How does Stage 2 work?

After stage 1, the algorithm has nearly perfect segmentation, but
because it’s related to pairwise constraints (that only measure
relative differences) we don’t know the absolute labels.

What this essentially means is we’re unsure if the labelings of Y
are actually Y or -Y

Score(Y) = ZX Y,.

veV

Decision rule:

F

If ZXvﬁ, <0, output —Y; elseoutput Y.



How does Stage 2 work? - continued

Our solution is to use unary/node
observations to decide between
two labelings.

Image True Segmentation
Even if the node noise is large
(even close to 0.5) we aggregate
evidence and with majority vote
end up with the correct answer
with high probability

(b)

(2)




True Optimal vs Current 2 step algorithm

Even if we perform exact marginal inference, the total
number of mistakes for an optimal predictor is not zero. It
is O(p? N). Meaning our algorithm is as good as any.

The reason why Is because the optimal
solution must deal with the inherent
uncertainty introduced by the generative
model. This model can include ambiguous
data and noise, which limits the accuracy

A pixel becomes impossible to ddetermine
correctly when multiple noisy edges
around it are wrong at the same time.

probability of single edge wrong — p
probability with 2 edges wrong — p?
For N pixels = p* N



True Optimal vs Current 2 step algorithm - Continued

The authors valdiated this theory with

synthetic 20x20 grids and tested them. 0.2
—Marginals
p=04 015 |—Cycle LP
— Two-Step
They tested multiple inference strategies: —Local LP

1) Exact marginals
2) LP relaxations
3) Cycle LP relaxations

Hamming Err
o

O
o
L

When edge noise is low, the 2 step 00 0.05 0.1
algorithm is virtually identical to the exact -
marginal inference



Thank you!

Aditya Kanteti



