

CSE 264 Approx. Algs
CSE 142 Machine Learn
CSE 189E Tech. Writing
ECE 175 Energy Ctrl + 34.

Vagges

Approximation Algorithms

NP-hard algorithms, polynomial time, where not known

We do a presentation, read papers, and this is under theoretical CS

Approximating efficient values

Class is reading papers, examining problems, presentations

Approximate solution for drive to SJ.

Given $G(V, E, w)$
 $w > 0$

$\xrightarrow[\text{shortest path}]{} B$

BFS is a soln.

what does this mean. w means weight

Dijkstra generalizes BFS

$V = \# \text{ vertices}$, $M = \# \text{ edges}$

$\Rightarrow O(m \log n)$

↳ 3 properties ?

if $n \ll m$ then $\approx \tilde{O}(m)$

Polynomial Time, computes optimal solution, Always correct
↳ "efficient algorithm" $O(n)$, $O(n^2)$, $n \log n$, n^3 not 2^n or n^n

You can relax all 3 properties.

like 1 → slight exponential time: $1.3^n \approx 2^n$

For 2 → maybe approximate the optimal solution,

APX $\rightarrow 120$, $\text{opt} = 100$

One method for $\text{apx}/\text{opt} = 1.2$

the multiplicative factor apx : $\text{apx} \leq \kappa(\text{opt})$
↳ common ↳ multiplicative factor

↳ additive factor apx : $\text{apx} \leq \text{opt} + \beta$, β ↳ additive factor
↳ not scalar, not popular

③ Relaxes the probability of being correct. Related to analysis like worst-case $O(n)$

↳ Dijkstra $\forall G \leq O(M \log n)$

But most places care for specific, not generic, instances.

Average case analysis, on random graphs. (heads or tails on each node/edge existing). $G(V, E, w)$. Cryptography looks at average case, & many algorithms care about this.

(social network) β

Some situations have high clustering coefficients $A \triangle C$

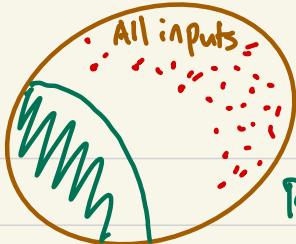
while random graphs are $1/2$ (heads/tails exists)

How many friends in networks, for best algos, $E[\text{deg}] = p(n-1)$

This is power scaling, popular will have higher degree.

So for some products avg or worst case might not be best.

Beyond worst-case analysis (WCA) uses assumptions for inputs to creating algorithms.



Very bad cases (NP hard/complete)

Real world input space, typical inputs.

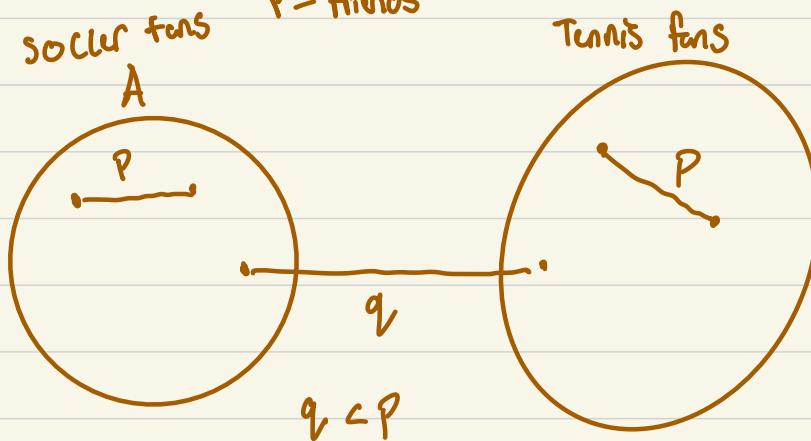
We're using this information for approx algorithms

These are called 'planted' solutions, like a password to brute force

↙ (example)

A popular model is called stochastic block model for community detection. Can you recover the 2 communities?

P = friends



Can you recover the communities, and can you do it in polynomial time (effic.).

$G(n, p)$

$O(n^2)$

↳ edge present w/ probability P

Recovery means finding all nodes inside A , and all nodes in B .

Exact recovery would be finding all the people in each community based on connections ($p=0.8, q=0.5$). For example, (for an outside guesty person in A or B).

Approx recovery of communities would label a subset and find it. $(x < .2?)$
algs exist such that if $p-q=x$, then can find solution
We want to recover w/ better probability than $n/2$ ($1/2$ guess).

What is satisfiability?

3 SAT $(x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_7 \vee x_8 \vee \bar{x}_9) \wedge \dots$

↳ NP-complete, All np-complete are a 3 SAT special case, vice-versa.

Read 1/2 papers, write a report, do research.
and present to the class, and then a final exam.

Lecture 2, Oct 2nd

What are cool?

Hierarchical clustering.

Beyond WCA?

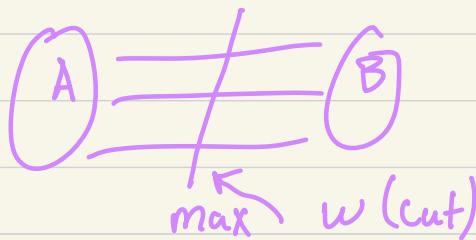
Find partition of dataset into
similar looking data points.

How does google search work?

Clustering. Given points $S = \{x_1, x_2, \dots, x_n\}$
Find similar points.

Max-cut is a clustering problem. Points have a distance, separating into 2 groups is \uparrow based on distance

$G(V, E, w)$

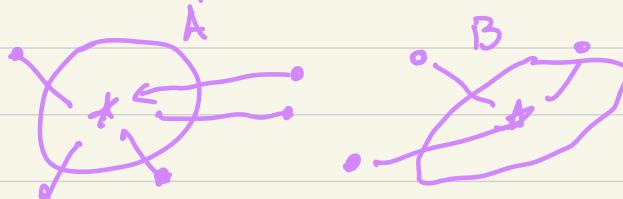


weight is maximizing the cut of connections

↳ K-center, K-medoid, K-means, Kshape optimize different objective functions for slightly different things.

↳ means:

minimize all points to their center of group



K-medoid: puts it closer to most points

K-means: cares about distance squared

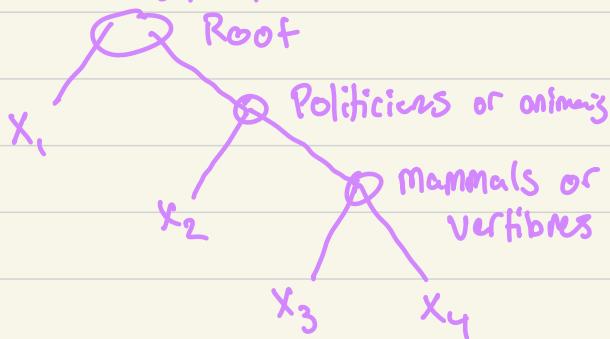
K can be any number.

Hierarchical clustering goal is to get hierarchy of data points. How do you rank like shoes? Instead of 9 clusters for sandals, running shoes, formal, kids, etc (like graph partitions, or kmeans) we use hierarchical clustering.

How do you find the # of clusters effectively \uparrow 3 vs 5 vs 100.

Hierarchical clustering

$n: x_1, x_2, x_3, \dots, x_n$



What do you do to split this effectively, what objective function (having similarity score).

Q (objective function):

$$\text{cost}(T) = \max_{x_i, x_j} \left(\frac{\text{dissimilarity}(x_i, x_j)}{\# \text{ hops}} \right)$$

Everything is relative to rest of hierarchical, my idea was x_2 (adds all dissimilarity scores) compared to x_3 .

A good popular cost function: \rightarrow from STOC '16 journal
penalize if similar things (papers) were separated
early on the tree versus later on the tree.

$$\text{cost}(T) = \sum_{i,j \in V} w_{i,j} \left\{ \begin{array}{l} \text{# data points present when } i, j \text{ got split} \\ n \end{array} \right\}$$

↓

similarity of pair $\cdot \left(\frac{200}{1000} \right)$

split @ 200

```

graph TD
    1000[1000] --> 200L[200]
    1000 --> 800R[800]
    200L --> 400L[400]
    200L --> 200R[200]
    400L --> 100L1[100]
    400L --> 100R1[100]
    200R --> 100L2[100]
    200R --> 100R2[100]
    100L1 --> 50L1[50]
    100L1 --> 50R1[50]
    100R1 --> 50L2[50]
    100R1 --> 50R2[50]
  
```

$\text{cost}(T) = \sum_{i,j \in V} w_{i,j} \frac{|\# \text{ present}|}{n}$

↓

Similarity score (positive)

fraction of points present in split

Two types of clustering algorithms

Types of clustering algorithms (popular) ↴

- Linkage algorithms (Single linkage, average linkage, complete linkage).

All points are separate, and merge documents that are highly similar. Bottom-up approach

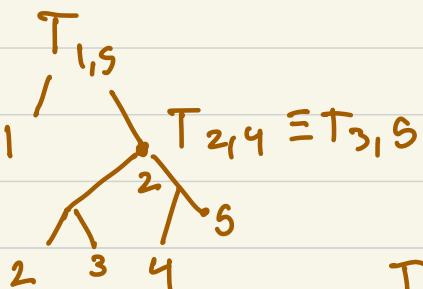
- Divisive (top-down). Take all points together, and find the best 'cut' / 'split' to separate into clusters (balance-cut, sparsest-cut).

Represent \downarrow as a convex optimization problem

$$\text{cost}(T) = \sum_{i,j \in V} w_{i,j} \left| \frac{\text{\# points present during cut}}{n} \right|$$

Setting: $G(V, E, w \geq 0)$ $|V| = n$

Find (binary) tree minimize: $\text{cost}(T) = \sum_{i,j \in E} w_{i,j} \left| \text{\# Trees of } T_{ij} \right|$



$\sum_{i,j \in E} w_{i,j} |T_{ij}|$ Penalty
 \hookrightarrow want the tree as low as possible when similarity is high (w).

T_{ij} is the subtree rooted at the LCA(i, j)

How do we write the objective function as vectors and use convex optimization relaxation.)

(continuous optimization is easier than discrete optimization)

$$\sum_{i,j \in E} w_{i,j} |T_{i,j}|$$

Convex Relaxations

1) Assign a boolean variable for each pair of nodes

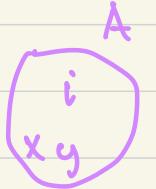
$$x_{i,j} \in \{0, 1\}$$

2) (assign vectors)

All data points are now vectors w/ their features

Aside: easier example. Variable that says whether 2 points

are separated or not.



$$x_{ij} = 1, \quad x_{xy} = \emptyset$$

max-cut maximizes weight of edges cut.

↳ Output is partition to split in 2.

We're given $\{1 \text{ if } x_{ij} \text{ split from cut, } \emptyset \text{ if not cut}\}$

This obj function cuts it:

$$\max_{\text{assumed} \rightarrow x} \sum_{i,j \in E} w_{ij} \cdot x_{ij}$$

$\emptyset \text{ or } 1$
num

$$x_{ij} = \begin{cases} 1 & \text{if split} \\ \emptyset & \text{if not split} \end{cases}$$

my idea to implement τ for the main problem

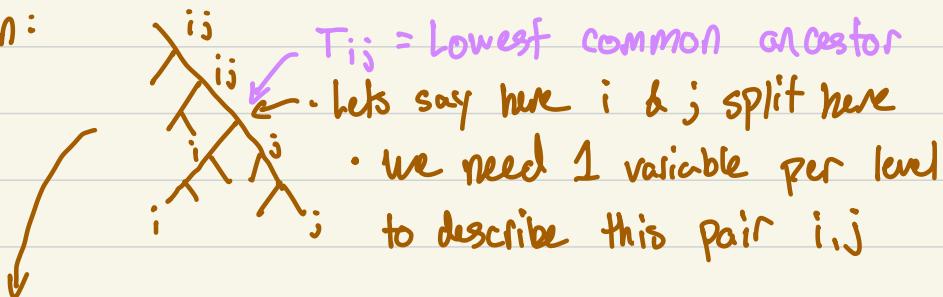
$$T_{ij} = \text{subtree minimize size}$$

- similarity

$$\begin{matrix} 1 & 0 \\ x_{ij} = \text{split} & \text{no split} \end{matrix}$$

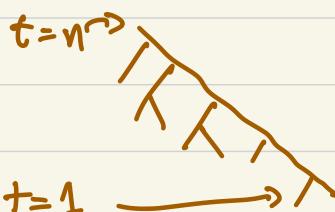
$$\text{minimize: } \left[\begin{matrix} x_{i,j} \cdot T_{ij} \cdot (1 - \text{similarity}) \\ \text{split} \end{matrix} \right]$$

Solution:



worst case of binary tree is $(n-1)$, best is $\log(n)$?

we define 'level' $t \rightarrow$



$x_{i,j}^t$ is $\{0, 1\}$ if

i, j are together at level t .
(1 if split)

$T_{ij} = \text{lowest common ancestor}$

$t=n$	0
$t=n-1$	0
$t=T_{ij}$	1
$t=1$	1

Once 1 always 1.

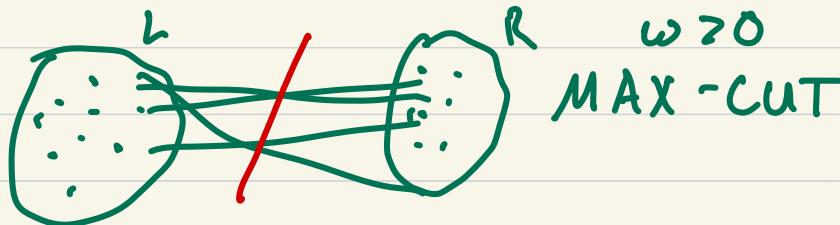
Lecture Oct 6 (late)

Talked about relaxation / NP-hard

Hierarchical clustering & semi-definite programming.

(2) graphs of vertices, edges, weights -

$G(V, E, w)$ given this split into L & R so the edges cut between both groups is maximized

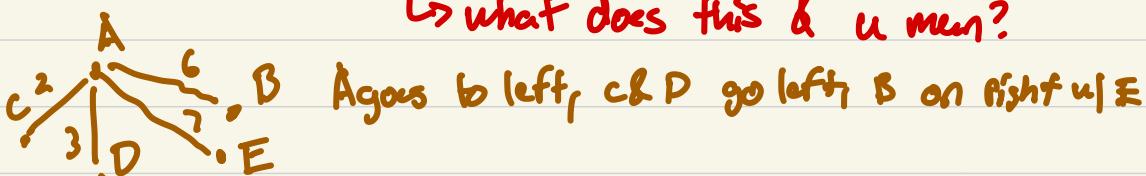


Given vertex A we know to keep on left or right side.

$$A: V \rightarrow \{0, 1\} \quad u \xrightarrow{\quad L \quad} \quad u \xrightarrow{\quad R \quad}$$

$$\max \sum_{u, v \in E} w_{uv} \mathbb{1}_{\{A(u) \neq A(v)\}}$$

↳ what does this & w mean?



We used to use greedy

If all edges are cut, then bipartite fun:
(all separated?)

max function (sum of all weights) = 1.

↳ back then greedy would take A & go from there
w/ $\text{opt} \geq \frac{1}{2}$

Even worst case on any graph would mean result in a 50% split (random split).

Bipartite graph splits everything (100%)

50% of splitting or not cutting.

Semi-definite programming was to improve the random split

One idea was to rewrite MAX-CUT:

↳ left or right

For every vertex $v \in V$: a variable $x_v \in \{0, 1\}$

For every edge $e \in E$:

$z_e \in \{0, 1\}$

↳ cut edge v/n

How to run it using ↑ weight ↗ cut v/n

$$\max \sum_{u, v \in E} w_{u, v} \cdot z_e$$

This would cut everything so we need to have constraints so
↳ is not = 1

Constraints for partitions:

i) $z_{u, v}$ is less than $x_u + x_v$, so if both $u \in V$

are on the same side then their connection is not cut:

$$Z_{uv} \leq x_u + x_v \quad x \in \{0, 1\}$$

$$Z_{uv} \leq 2 - x_u - x_v$$

interval

set

People thought to solve over $[0, 1]$ instead of $\{0, 1\}$

This is called the Linear Programs (LP)

↪ linear objectives & constraints for optimal solution

what is relaxation

But bc a cut is not 0 & 1 but can be 0.7 or 0.3 then the solution a weakness:

(L/R)

You can set all variables to 0.5 & all z's to 1 (cut)

which gives us the same response for all graphs.

LPs are not useful for MAX-CUT / this program.

We'll try another formulation to lead us to ^{Semi Definite} programming.

∀ vertex V encodes left or right.

Discrete

$y_v \in \{-1, 1\}$ ← additional variable

Problem

$$\max \sum_{u,v \in E} w_{u,v} \cdot \left(\frac{1 - y_u \cdot y_v}{2} \right)$$

if same side cut $1 - (-1)(-1) = 1 - 1 = 0$

if different sides then $1 - (1)(-1) = 2$

Then divide by 2 = 1

For every vertex we add a vector of n dimensions

↳ we allow $y_v \in \mathbb{R}^2$, but must be unit vector
 (l² norm = 1) with constraint:
 What is an inner product $\rightarrow \vec{y}_v \cdot \vec{y}_u = 1, \forall v \in V \quad \|y_v\|_2^2 = 1$

$$\max \sum_{u, v \in E} w_{u, v} \cdot \left(\frac{1 - \vec{y}_u \cdot \vec{y}_v}{2} \right) \text{ w/ unit vector if same sign = 1, if diff = -1}$$

These are SDPs (semi-def. proj.).

Matrix X can be \emptyset

$A \vec{x} = \lambda \vec{x}$ Then λ is eigenvalue & \vec{x} is eigen vector
 we can rewrite $\vec{y}_u \cdot \vec{y}_v \geq 0$ to find eigenvalues easily
 & see if pos/neg.

Gaussian elimination runs in n^3
 for n matrix to find eigenvalues
 quickly & see if all are positive.

$$\text{inner product} \\ A_{uv} = y_u \cdot y_v$$

$$\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} \xrightarrow{\text{pos only.}}$$

A_{uv} must have diagonals (1) & non-neg eigenvalues.
 ↳ something gives us this eff.

$$A = \begin{bmatrix} 1 & & & & & \\ & \sqrt{v_2 \cdot u_2} & & & & \\ & & 1 & & & \\ & & & \sqrt{v_3 \cdot u_3} & & \\ & & & & 1 & \\ & & & & & \vdots \end{bmatrix} \quad A = V_i \cdot U_i$$

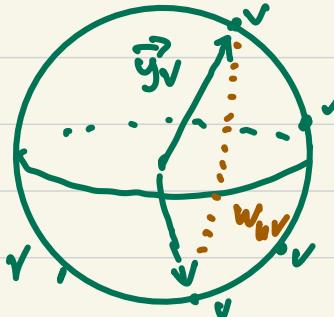
This is SDP and
 the best approx
 existing for max-cut.

anything more proves $P=NP$

Here it is SDP:

"embed"

Put all vertices onto unit sphere of \mathbb{R}^n dimensions



if weights large than opposite sides of sphere. if opposite sides then split.

CVX solver in python

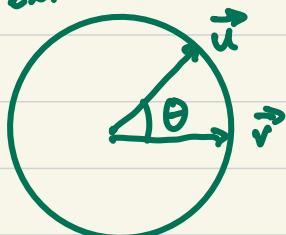
↳ OA algo: Random hyperplane rounding algorithm

Take a random hyperplane to cut the sphere to cut sphere. With pos or neg norm:

$$\begin{cases} \gamma = 0 \\ \gamma \leq 0 \end{cases}$$

Algorithm $\geq \sim 0.878$ (optimal)

↳ This algorithm creates ~ 0.878 or better of optimal



Find $\Pr(u$ splits from $v)$

$$\hookrightarrow \left(2 \cdot \theta_{uv}/360\right) \text{ or } \frac{\theta_{uv}}{\pi}$$

$$w_{uv} \cdot \frac{\theta_{uv}}{\pi}$$

$\text{Ans from SDP is } \cos(\theta_{uv}) \text{ so}$

$$\frac{w_{uv} \cdot (1 - \cos\theta_{uv})}{2}$$

$$w_{uv} \cdot \frac{\Theta_{uv}}{\pi} \geq 0.828 \cdot \left(w_{uv} \cdot \frac{(1 - \cos \Theta_{uv})}{2} \right)$$

$$\Pr[i|j] = \frac{\Theta_{ij}}{\pi} \geq 0.878 \cdot \frac{1 - \cos \Theta}{2}$$

Missed loss class, now Oct 13th.

Hierarchical clustering.

$$w(v, E, w) \\ \max \sum_{ij \in E} w_{ij} (n - |T_{ij}|)$$

Compared to Max-cut, which is how 2 are separated. Here HC, everything is eventually split.

n = everything (nodes)

outside

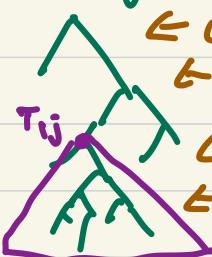
T_{ij} = inside tree

all

all physical

all books

all comics



What is an indicator function? 11

When k is separated from i, j (dolphin, cat, dog)

$$(n - |T_{ij}|) = \sum_{k \neq i, j} \left(\mathbb{1} \left(\begin{array}{l} k \text{ was first to} \\ \text{separate from } i, j, k \end{array} \right) \right)$$

$$\max \sum_{ij \in E} \sum_{k \neq i, j} \left(\mathbb{1} \left\{ \begin{array}{l} k \text{ was first to} \\ \text{be separated among } \\ i, j, k \end{array} \right\} \right)$$

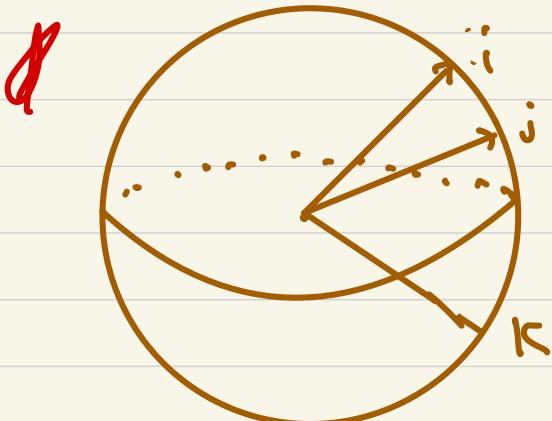
$$\begin{matrix} \hat{i} & \hat{j} & \hat{k} \\ i & j & k \\ 1/3 & 1/3 & 1/3 \end{matrix}$$

Summation over all weights

$$\text{fandom} = 1/3 \sum_{i,j \in E} (n-2)$$

Using similar method to max-cut SDP method

- 1) Solve SDP for hierarchical clustering
- 2) Draw hyperplane through origin
- 3) This beats random



$$\theta_{ij} \Pr[\text{k first separated}] \equiv \Pr[ij|k]$$

$$\theta_{ik} \Pr[ij|k]$$

$$\max(\theta_{ik}, \theta_{jk}) - \theta_{ij}$$

$$\frac{(\theta_{ik} + \theta_{jk}) - \theta_{ij}}{2 \cdot \min(\theta_{ik}, \theta_{jk})}$$

SDP:

$$\times \max(\theta_{ij}, \theta_{jk}) - \theta_{ij} / \sqrt{\pi}$$

$$\frac{1}{2\pi} \left(\Theta_{ik} + \Theta_{jk} \right) - \Theta_{ij} \quad \left[\begin{array}{l} \text{is prob of splitting} \\ k \text{ from } i \& j \end{array} \right]$$

$$\left[\begin{array}{l} \Pr[ij|k] = x \\ \Pr[ik|j] = y \\ \Pr[jk|i] = z \end{array} \right] \quad x + y = \frac{\Theta_{ik}}{\pi} \quad \begin{array}{l} \text{i \& k got separated} \\ \Theta_{ik} \end{array}$$

3 by 3 linear system

$$y+z = \Theta_{jk}/\pi$$

$$x+y = \Theta_{ik}/\pi$$

$$x+z = \Theta_{ij}/\pi \quad \text{Semi-definite Program:}$$

$$SDP : \max_{i,j \in E} \sum_{t=1}^n w_{ij} (1 - x_{ij}^t)$$

edges levels whether x_{ij} separated at level t .

$$x_{ij}^t = 1/2 \left\| v_i^t - v_j^t \right\|_2^2$$

↳ every vertex (i) has n vectors for each level.

After SPP we get n vectors for each vertex
for

each size at most t

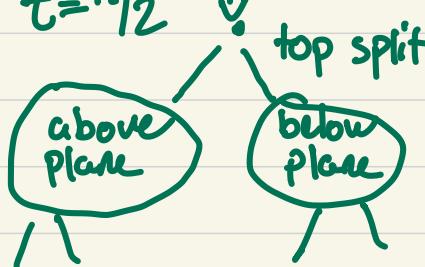
level t looks
like:

→ all clusters, we've cut
at n , we've cut a ton, and at 1 still a
large amount of graph isn't split.

A good candidate is $n/2$ since we have
already split a good amount w/o losing structure

Then taking the $n/2 \xrightarrow{\text{level}}$ resulting vector from SPP,
we run random hyperplane approx. algorithm.

so after we look at $t = n/2$



This results
in an SPP
graph.

cont.
again →

This is like
still better.

.3336 · Opt

max cut is SPP

Max bisection algorithm is an SDP that is 0.6-opt. each level needs to have exactly half and half resulting output of graph.

1) Run SDP 2) hyperplane rounding @ $t = n/2$

The opt soln is either:

$$1) \text{Opt} \leq \underbrace{(1-\varepsilon)}_{\substack{\text{some 80\%} \\ \text{or whether}}} \underbrace{(n-2) \sum_{i,j \in E} w_{ij}}_{\text{cut cut more than edges of graph}}$$

How can we beat 1/3 approx?

$$R_{\text{Random}} = \frac{(n-2) \left(\sum_{i,j \in E} w_{ij} \right) (1-\varepsilon)}{3(1-\varepsilon)}$$

✓ beats opt in cases where opt is not large

in these cases just choose 1/3.

2) How about high opt solutions $\text{opt} \geq (1-\varepsilon)(n-2) \sum_{i,j \in E} w_{ij}$
Then we use what we made?

We use objective, SDP, Algos, Geometry, Analysis

Goal is to beat $\frac{1}{3}$ greedy baselines = $\frac{1}{3}$

This soln gets ≥ 0.336 optimal
which proves we can improve

$$G(V, E, w \geq 0) \sum_{ij \in E} w_{ij} (n - |T_{ij}|)$$

$$\sum_{ij \in E} w_{ij} \sum_{k \neq i, j} \underbrace{\mathbb{1}_{\{k \text{ not a leaf of } T_{ij}\}}}_{\text{only if } k \text{ got separated first}}$$

$$y_{ijk} = \left[w_{ij} \mathbb{1}_{\{k \text{ not a leaf of } T_{ij}\}} \right] y_{ij} = \sum_{k \neq i, j} y_{ijk}$$

random variable

Alg, (k got separated first) $(i, j, k) = \Pr[ij|k] = \frac{1}{3}$

Random partition recursive

Alg₂ SDP first random next

1) solve SDP for hierarchical clustering
↳ gives vectors for all levels

2) look at vectors at $|n|_2 = t^* = 1$.

$$x_{ij}^* = \chi_{ij}^{t^*}$$

3) Do the hyperplane rounding for partition (S, \bar{S})
4) Run random alums (S)

so SDP/hyperplane first, then random always (Alg₁)
is a subroutine to run after Alg₂ ≥ 0.336 opt

$$\text{Alg}_1 \geq 0.333 \text{ opt}$$

Max uncut bisection is a more optimal solution.

We have (spreading) and (monotonicity)

x_{ij}^t . if 1, then ij separated @ level t.
level t has at most clusters of size t.

$$\text{SDP obj: } \max \sum_{t=1}^{n-1} \sum_{ij \in E} w_{ij} (1 - x_{ij}^t)$$

Spreading: $\sum_{i \neq j} x_{ij}^t \leq t$
 $\sum_{i \neq j} x_{ij}^t \geq n - t, \forall i, \forall t$

monotonicity: $x_{i,j}^{t+1} \leq x_{i,j}^t \quad \forall i,j \in E, \forall t, \sum_{i,j} x_{i,j}^t = 1$

SDP obj: $\max \sum_{t=1}^n \sum_{i,j \in E} w_{i,j} (1 - x_{i,j}^t)$

$$\hookrightarrow x_{i,j}^t = \frac{1}{2} \|v_i^t - v_j^t\|_2^2$$

$OPT \leq (1 - \varepsilon_1) \left[(n-2) \sum_{i,j \in E} w_{i,j} \right] \leftarrow w$

max of all weights (valid upper bound).

Random Always = $\frac{1}{3} (n-2) \sum_{i,j \in E} w_{i,j} = \frac{1}{3} \frac{(1 - \varepsilon_1)}{(1 - \varepsilon_3)} (w)$

so random always $\geq \frac{1}{3(1 - \varepsilon_1)} OPT$

now when using: $SDP_{rel} \geq OPT \geq (1 - \varepsilon_1) w$

Analysis: Events to analyze:

- $E_{ij} = i, j \text{ together aft. 1st cut.}$
- $E_{ijk} = i, j, k \text{ together aft. 2nd cut}$
- $E_{ijk|k} = i, j \text{ together aft 1st cut and } k \text{ separated}$

understand top cut?

$$E[y_{ij}|k] = \frac{w_{ij} \cdot \Pr[\varepsilon_{ijk}]}{3} + w_{ij} \cdot \Pr[\varepsilon_{ij|k}]$$

if k is leaf or i or j split
first then this is zero ↴

$$E[y_{ij}|k] = \frac{w_{ij}}{3} \Pr[\varepsilon_{ij}] + \frac{2w_{ij}}{3} \Pr[\varepsilon_{ij|k}]$$

prob ij not split is $ijk + ij|k$

so:

$$E[y_{ij}] = \sum_{k \neq ij} E(y_{ijk}) = \frac{w_{ij}}{3} \left[(n-2) \Pr[\varepsilon_{ij}] + 2 \sum_{k \neq ij} \Pr[\varepsilon_{ij|k}] \right]$$

$$\Pr[\varepsilon_{ij}] = 1 - \Theta_{ij}/\pi$$

$x_{ij}^b = \cos \Theta_{ij}^z$, the vertices together are

$$\Theta_{ij} \leq \bar{\Theta} \quad \Theta_{ij}^z \quad \bar{\Theta} = \arccos(1 - \varepsilon_2)$$

$$\min: \sum_{k \neq i} \Pr[\varepsilon_{ij}|k]$$

$$\min: \frac{1}{2\pi} \sum_{k \neq i} \theta_{ik} + \theta_{jk} - \bar{\theta} \geq (n-2) \left(\frac{1}{4} - \frac{\bar{\theta}}{2n} \right)$$

$$\text{subj to: } \sum_{k \neq i} \cos \theta_{ik} \leq \frac{n}{2} - 1$$

$$\sum_{k \neq j} \cos \theta_{jk} \leq \frac{n}{2} - 1$$

20-25 min presentations \rightarrow week 8 or 9

10-15 mins technical, start w/ introduction to prob.
Don't jump directly into technical specifics.

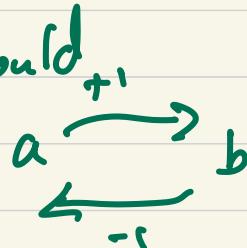
slides for presentation. Present paper, part of
proof (in a self contained way).

We have a stochastic model:
rankings, correlation clustering, hierarchical clustering

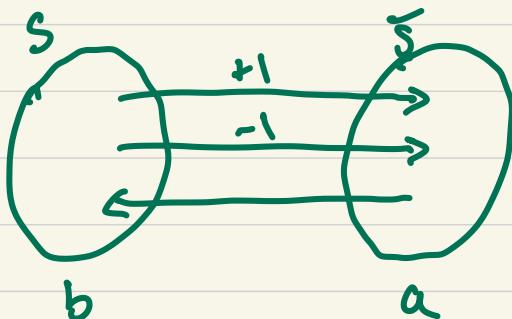
Sample 2 items: $a ? b$: $\begin{cases} (1-\varepsilon) \text{ correct} \\ \varepsilon \text{ wrong} \end{cases}$
which is smaller

3 items: $(a, b, c) \rightsquigarrow 1 - \varepsilon$ right
 ε (2 wrong answers)

for solving $a \triangleleft b$, we could
set it up as

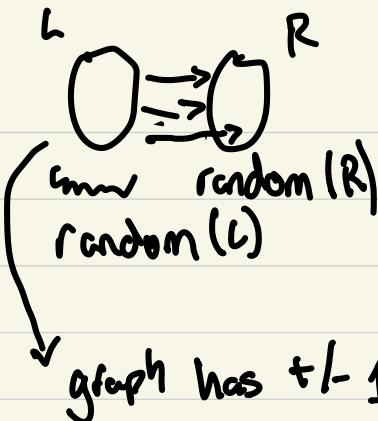


lets setup weighted/directed max-cut:



we will only
care about left
to right edges. Then
include both weights

Alg: max cut first on $s \& \bar{s}$, then random
permutations of $s \& \bar{s}$.



Maximize satisfied constraints is goal, now does $W(L, R)$ get to that?

max # SAT constraints.

graph has ± 1 , and directed.

Beyond
worst
case

We have a total of m constraints,

m_S is satisfied by first cut (L, R)

m_V violated by L, R
 m_U unaffected

$\downarrow -1 \quad \downarrow +1$

Weight of cut $W(L, R) = m_S - m_V$

$$\text{Alg} = m_S + \frac{1}{2} m_U$$

$$= m_S + \frac{1}{2} (m - m_S - m_V)$$

$$= \frac{1}{2}m + \frac{1}{2} m_S - \frac{1}{2} m_V = \frac{m}{2} + \frac{1}{2} W(L, R)$$

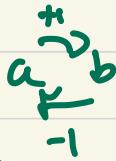
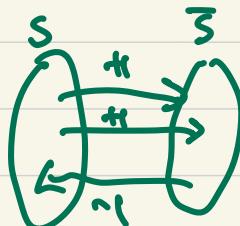
NP hard
Problem

weight of any
cut in graph

opt cut \geq median cut $\geq m/2$

How about approx alg?

The graph (trial) has \emptyset alg



We're doing Max-Cut w/ Directed & negative weights.

$E(\text{SDP} + \text{hyperplane rounding}) \geq 0.818 \text{ opt}_{\text{final}}$ (typically)

• One solution, typically bad but good inc. we can add a coeff to make everything positive (no neg weights).

Only for regular Max-Cut,
for directed my \rightarrow

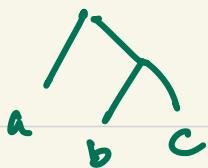
$E(\text{SDP}_{\text{hyp}}) \geq 0.857 \text{ opt} - 0.143 |w|$

if un-directed in

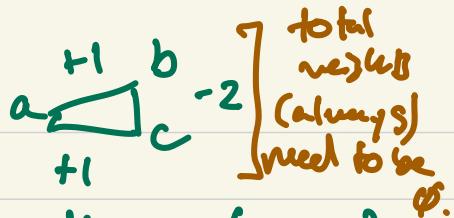
$E(\text{SDP}_{\text{hyp}}) = 0.818 \text{ opt} - 0.122 |w|$

$$\geq 0.857 \text{ opt} - 0.143 m \geq \underbrace{0.857 m}_{2} - 0.143 m$$

$$= \frac{.57m}{2} = .286m$$



For these cases
encode as:



Alg should be $\geq \frac{1}{3}m$ (random)

$$w(L|R) = 2m_S - m_V$$

$$\text{Alg} = m_S + \frac{1}{3}(m - m_S - m_V)$$

$$= \frac{1}{3}m + \frac{1}{3}(2m_S - m_V)$$

$$= \frac{1}{3}m + \frac{1}{3}w(L|R)$$

Nov 5th \rightarrow wk 6
 \rightarrow wk 9?

Nov 17th Monday (ian solom, Adi)

\sim 20 minutes with slide decks

Draw graphs too

Show actual self-contained proofs

How Hard is Inference for Structured Prediction

describe in our own words \hookrightarrow Vaggos's advisor.

Embeddings, preserve comparison.

$$\delta(x, y) < \delta(w, z)$$

This is enough.
↓

We can embed points in \mathbb{R}^d where $d \leq n$
& $\frac{n}{2} \leq d \leq n$

Euclidean norm assumed

$$\| \dots \|_2 = \sqrt{x_1^2 + \dots + x_d^2}$$

$$\| x \|_1 = |x_1| + |x_2| + \dots + |x_d|$$

↳ L1 norm

Conv. way to write is $\text{sign}(\vec{x}) \cdot \vec{x}$

$$\| x \|_\infty = \max_{i \in [d]} |x_i|$$

L ∞ norm

$$\| \varphi(x) - \varphi(y) \|_2 \leq \frac{1}{2} \cdot$$

$$\| \varphi(w) - \varphi(z) \|_1 \leq$$

$$(1, -1) \cdot (x_1, x_2) \\ \hookrightarrow x_1 - x_2$$

So to preserve data we need minimum $n/2$ dimensions & n max dim.

The # ordinal embeddings is less than potential things trying to capture n and less than $n/2$

Terminal embeddings
(ord. embed.) (VIP)

How do we keep only the important embed. / nodes.

$T = \{t_1, t_2, \dots, t_k\}$ Terminal nodes
↳ k terminals

$$VIT = \{v_1, v_2, \dots, v_{n-k}\}$$

all other nodes

we went to keep T and preserve those over VIT.

→ $(t, ?) \leftarrow (b_i', ?)$ We want to compare distances
 ↓ any node of this form.
 $t, t' \in T$

Upper bound is K dimensions, these are our VIP nodes (lets say K is small)

If everyone is VIP, you need to prioritize every competitor.

How do we project key embeddings? \hookrightarrow terminal nodes
 \hookrightarrow by putting each one in its own dimension \hookrightarrow L2

Idea: Every vertex $r(\cdot, \cdot, \cdot, \cdot, \dots)$ has k coordinates
each coordinate is dedicated to a terminal node

terminal 1: $t_1(1, 0, 0 \dots 0)$

$$t_2 (0, 1, 0 \dots 0)$$

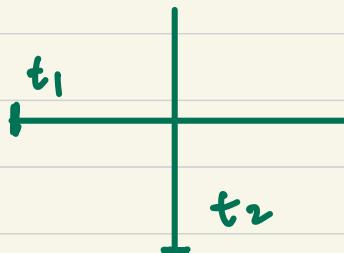
instead of doing 1 do $-M$ (large negative)

$$t_1, (-M, 0, 0, \dots, 0)$$

$$t_2, (0, -M, 0, 0, \dots, 0)$$

Pick $M = k^3 n^2$ (large number)

$$t_i = -M \vec{e}_i; \quad \text{lets say } k \text{ is pretty small.}$$



Creating embeddings based on 'Rank' of vertex to terminal (1 if closest, 2 if 2nd).

$$\text{rank } r\{t, v\} \in \{1, 2, \dots, k \cdot n\}$$

specifying order in which distance t, v appears w.r.t other vertices.

so what is the embedding for a vertex? (not terminal)

$$\varphi(v) = (r(t_1, v), r(t_2, v), \dots, r(t_K, v))$$

compar:

pair (t, v) & (t', v')

$$\hookrightarrow \|\varphi(t) - \varphi(v)\|_2^2 = \sum_{i \in t} r(i, v)^2 + (r(t, v) + 1)^2$$

$$\downarrow [0, 0, \dots, -M, 0, 0, \dots]$$

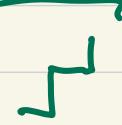
$i=t$

$$= \sum_i r(i, v) + 2M \cdot r(t, v) + M^2$$

so we

$$\sum_i r(i, v) + 2M \cdot r(t, v) + M^2$$

L_1 = manhattan \rightarrow



L_2 norm = euclidean \Rightarrow

Application: Finding L_1 diameter of a set P of points $\in \mathbb{R}^d$

CD $x_1, x_2, x_n \in \mathbb{R}^d$

Find pair $p, q \in P$ where $\|p - q\|_1 = \max_{p, q} \|p' - q'\|_1$

Naive is checking all diameters w/ distance calc:

(dis small, n is large) Naive: $O(n^2 \cdot d)$

Better: $O(n \cdot d \cdot 2^d)$

? isometry?

$$f(p_1) = [\dots] \quad \text{each } f_3(p) = \vec{s} \cdot \vec{p}$$

$$f(p_2) = [\dots]$$

:

$$f(p_n) = [\dots]$$

$\underbrace{\quad}_{2^d \text{ words}}$

$$\vec{s} = \{ -1, +1 \}^d$$

$$\|p - q\|_1 = \|(f(p) - f(q))\|_\infty$$

$$f_S(p) = \vec{s} \cdot \vec{p}$$

$$L_1 \rightarrow L_\infty$$

isometry from $L_1^d \rightsquigarrow L_\infty^d$

$$f(p) = [\boxed{1} \dots \dots]$$

Look at only 1 coordinate &
do max minus min &
compute for all.

$$f(p_n) = [\boxed{1} \dots \dots]$$

ordinal embedding:

Taking embeddings from 1 space to another
while maintaining connections b/w nodes.

↪ matrix space (euclidean ^{dist.} space or tree space)

let $X = ([n], \delta)$ be any matrix space. $\varphi = \phi_i$

We say $\varphi: X \rightarrow \mathbb{R}^d$ is an ordinal embed. if for
every $x, y, z \in X$ we have:

$$\delta(x, y) < \delta(z, w) \iff \|\varphi(x) - \varphi(y)\| < \|\varphi(w) - \varphi(z)\|$$

Distortion: if 1 dist. becomes 17 dist, then 17 is distortion.

$$\psi(x) \xrightarrow{1} \psi(y)$$

$$\psi(z) \xrightarrow{17} \psi(w)$$

Def: Ordinal relaxation:

A relaxation of 10 means a dist mult. by 10 is still less than other distances, thus keep & don't mess

$$\xrightarrow{\downarrow 10} \delta(i,j) < \delta(k,l) \Rightarrow \delta'(i,j) < \delta'(k,l)$$

'significantly different distances should be preserved'

Some constraints are $n > \text{dimensions} > n/2$ for $\mathbf{x} = [n], \delta$

? & # of ord embed of d vs # distinct metrics
(1) (2)

if you go from higher dim to lower, we want α to be larger to have less constraints

relaxation balances dimensions & points of comparison.

if $\alpha = 1$ then same, higher allows for some info lost.

Theorem trade offs α vs d

For every int d, every int n:

\exists Matrix space T on n points

'there is a matrix space'

such that the triplet relaxation

↳ special case (i, j) vs (i, k)

of any ordinal embedding of T into d dimension coefficients
matrix space.

is atleast:

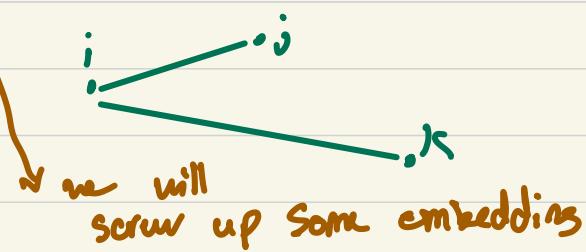
$$\frac{\log n}{\log d + \log(\log n) + g} - 1$$

any embedding will have this loss
↳ getting rid of this is
'max relaxation'. Worst case bound.

we want to

preserve this relationship:

in the new space



How do we prove this?

1) we need a family of significantly different metrics spaces

we dont have constraints on close stuff

like $||w_i|| \leq \log(n)$ or something?

2) # ord embed of dim d \ll # family of sig. diff metrics spaces

girth 6 of a graph is shortest cycle

edges in shortest cycle, here is 4. A triangle is 3.

in a pentagon if it has a triangle in it

then 3:

it's important to construct high girth graphs to solve/make this.

Delete edges to make a big family of high girth graphs. Like before A to B was 1, after edge gone, then $g-1$.

it doesn't have to be a,b it could be x,y.

we count probability of getting higher girth cycles after cut. we choose graph to be high girth.

vertex
nodes, edges

1) Pick high girth graph $G(V, E)$ $|V|=n$

↳ 'how dense can you make graph while still being ^{high} girth.'

$m = |E| \geq \frac{1}{4} n^{1+\frac{1}{g}}$ g: girth, E is edges

$100 \geq \frac{1}{4} n^{1+\frac{1}{g}}$? ↳ shortest cycle.

Pick g : $\frac{\log n}{\log d + \log \log n + 8}$ then $|E| \geq 16 \cdot n \cdot d \cdot \log n$

ick
way \rightarrow

(at least $\log n$ edges
& has high girth)

2) Subsample edges of G :

large # $N: [G_1, G_2, \dots, G_N]$
this property we're making
 $(*) \forall G_i, G_j: \exists v \in V: E(v) \setminus E(v) \neq \emptyset$ and $E_{G_i}(v) / E_{G_j}(v) \neq \emptyset$
↳ for any pair $\{G_i, G_j\}$ there exists

what this means is when is v unhappy if we go from G_i to G_j :

How many G do we choose? to high is hard for \uparrow
to low doesn't guarantee:

ord embed $\ll \#$ family of sig. diff metrics
of dim d spaces

so we sample $1/2$ of each edge

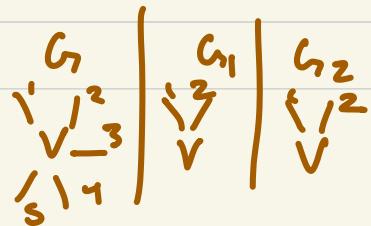
$G_1: m$
 $G_2: m$
⋮
 G_N

N pick $N = 2^{bm}$, for $b < 1/2 \log_2 4/3$

Proof: Simplifying assumptions:

1) k -regular graph G

2) independence on v



being a witness for g_{ij} : g_{ij} very far away?

Ordinal embeddings $\rightarrow n$ points

distance $(a, b) < \text{distance } (a, c)$

emb $F \in \mathbb{R}^d$

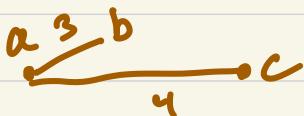
$$\|F(a) - F(b)\| < \|F(a) - F(c)\|$$

lets take care of contrastive triplets. m triplets
(anchor, pos, neg)

Constraints: m triplets of this form

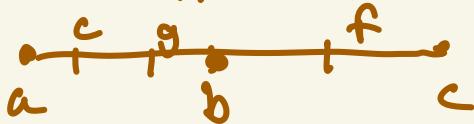
Realizable instances: no paradoxes like $a > b > c > a$
Focus on this.

Goal: do this embedding for all triplets w/ $\text{dim } O(Jm)$
we can always do w/ $O(m)$ or $O(n)$ so how?



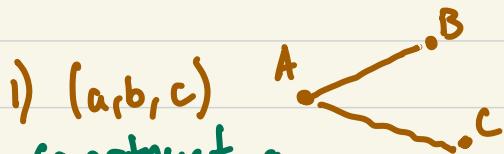
1) Construct a graph: Tells how ^{points} triplets are related to each other. So if I have \dots then add a point, I need to ensure constraints are still related.

$(a, b, c) \rightarrow$ embed
 (e, g, f) points



B is fixed, since we need to ensure points are violated (realizable instances).

$\| \cdot \|_2^2 \rightarrow$ euclidean.



undirected & unweighted

i) (a, b, c)
construct a

dependencies graph, ~~set~~ set, of n vertices.

Then place in (b, c, d)

bc, bd

Then place in (a, b, d)

ab, ad

\rightarrow edges

$|E| = 2m$ edges.

Arboricity of G : The [^] # of forests in which edges can be partitioned (density).

Forest - disconnected tree.

minimum

} 2 trees,
1 forest

if we get arboricity of 4, then emb $F \in \mathbb{R}^{d=4}$

Example: Tree $r=1$ (how many trees to overlay to get).
Cycle $r=2$ $\rightarrow [+]$

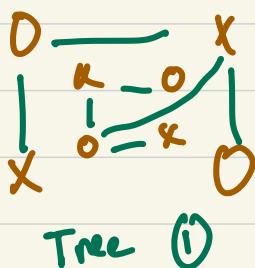
The bipartite klick of 4,4 nodes: $K_{4,4}$
click on circles vs x's.



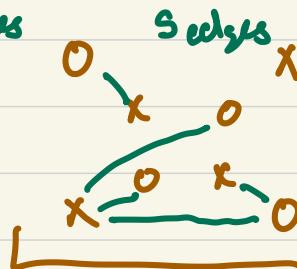
$K_{4,4}$

at most 7 edges so
 $|T_{\text{tree}}| \leq 7$

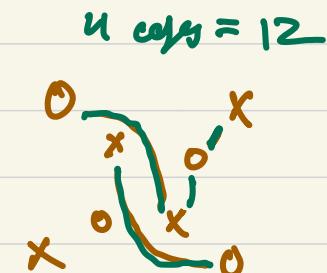
①



7 edges



5 edges



6 edges = 12

Does not have to be
 connected, can be 2 trees or
 1 forest (acyclic graph)

Tree can have ≤ 7 edges or else it would be
 cyclic. We want a forest which is okay being
 disconnected, but not cyclic.

if aboricity low, then tree like, high means likely cycles
 or dense.

Aboricity: maximize S

$$\left\{ \frac{|\text{Edges in subgraph } S|}{|\text{Vertices in subgraph } S| - 1} \right\}$$

$S = \text{subgraphs of } G$

$$\max_S \left\{ \frac{|E_S|}{|V_S| - 1} \right\}$$

Colorable: \leftarrow 2 colorable (bc not cyclic).

Facts: 1) G of arb. r \rightarrow is 2r colorable \uparrow
 2) $r \leq 2\sqrt{|E_G|} \leq O(\sqrt{m})$
 3) \exists ordering $x_1 x_2 x_3 \dots x_n$

There exists a

such that every node has at most

$$|N^-(x_i)| \leq 2r-1, \forall i$$

\hookrightarrow backwards ordering

where every previous node has at most $(2r-1)$ adiacency when looking back

$$\|F(a) - F(b)\|_2^2 \leq \|F(a) - F(c)\|_2^2$$

↓

$$\|F(a)\|^2 + \|F(b)\|^2 - 2 F(a) F(b) \leq \|F(a)\|^2 + \|F(c)\|^2 - 2 F(a) F(c)$$

1) Construct a graph \uparrow 2) linear algebra trick

By setting to unit circle this

$$\|F(b)\|^2 \rightarrow \text{goes to 1, same with } \|F(c)\|^2$$

$$1 - 2 F(a) F(b) \leq 1 - 2 F(a) F(c)$$

$$(x_1 y_1) \cdot (x_2 y_2) = x_1 x_2 + y_1 y_2$$

$$F(a) \cdot F(b) \leq \underbrace{F(a) \cdot F(c)}_{= \binom{n}{2}}$$

I got lost.

$$F: V \rightarrow \mathbb{R}^{4r} : F(x) = \begin{pmatrix} \hat{x} \\ x^r \\ \hat{x} \\ x^r \end{pmatrix}$$

if dependency graph:

$$\hat{x} \cdot \hat{y} \approx \text{rank of distance } d(x, y)$$

Order $\{x, y\}$ pairs in descending order, in terms of ^{distance}

if a linear system has no solution, it is inconsistent.

Being linear system, it has a $\text{det} = \emptyset$ and therefore adding slight noise to each of the variables (polynomials) will make a ^{fiddles} solution since it will 'escape the roots'.

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 - x_6$$

inner prod (like 3,4) is given by ranking.

